16 research outputs found

    Impact of irrigation on poverty and environment in Ethiopia. Draft Proceeding of the Symposium and Exhibition held at Ghion Hotel, Addis Ababa, Ethiopia 27th -29th November, 2007

    Get PDF
    Poverty, Crop management, Irrigated farming, Rainfed farming, Irrigation systems, Food security, Water harvesting, Institutions, Environmental effects, Public health, Malaria, GIS, Remote sensing, Crop Production/Industries, Environmental Economics and Policy, Farm Management, Food Consumption/Nutrition/Food Safety, Food Security and Poverty, Health Economics and Policy, Institutional and Behavioral Economics, Resource /Energy Economics and Policy,

    The Nile Basin water resources: overview of key research questions pertinent to the Nile Basin initiative

    No full text
    The Nile Basin Initiative (NBI) is a remarkable achievement towards the cooperative management of the common Nile water resources. Based on a Shared Vision Program and a Subsidiary Action Program, the NBI has numerous ongoing projects on the ground. Research on the Nile water resources has been recognized to be crucial for successful implementation of the NBI projects. Therefore, IWMI and other research centers have worked together with the NBI to identify knowledge gaps pertinent to the Nile water resources. This report presents prioritized research questions, pertinent ongoing research projects and the implementing institutions; and available databases on the Nile

    Discussion on theme 1 - Status quo analysis, characterization, and assessment of performance of irrigation in Ethiopia

    No full text
    In Awulachew, Seleshi Bekele; Loulseged, Makonnen; Yilma, Aster Denekew (Comps.). Impact of irrigation on poverty and environment in Ethiopia: draft proceedings of the symposium and exhibition, Addis Ababa, Ethiopia, 27-29 November 2007. Colombo, Sri Lanka: International Water Management Institute (IWMI)

    Creating synergies and a partnership among the CGIAR, Nile Basin Initiative [NBI]and ASARECA : consultations to identify opportunities to support NBI through research and capacity building; project report

    No full text
    The table of contents for this item can be shared with the requester. The requester may then choose one chapter, up to 10% of the item, as per the Fair Dealing provision of the Canadian Copyright ActThe Consultative Group of International Agricultural Research (CGIAR) is a strategic alliance of international agricultural centers that mobilizes science to benefit the poor. Along with the Association for Strengthening Agricultural Research in Eastern and Central Africa (ASARECA) and the Challenge Program on Water and Food (CPWF), consultations identified research gaps relevant to the Nile Basin Initiative (NBI). The project created a directory of research institutions involved in NBI research, and their pertinent ongoing and planned projects, as well as an inventory of available databases built by several of the partners. A (limited) review of bibliography on Nile research has been added to this report on activities

    Poverty impacts of agricultural water management technologies in Ethiopia

    No full text
    Farmers in rural Ethiopia live in a shock-prone environment. The major source of shock is the persistent variation in the amount and distribution of rainfall. The dependence on unreliable rainfall increases farmers’ vulnerability to shocks while also constraining farmers’ decisions to use yield-enhancing modern inputs exacerbating household’s vulnerability to poverty and food insecurity. As a response, the government of Ethiopia has embarked on massive investment in low cost agricultural water management technologies (AWMTs). Despite these huge investments, their impact remains hardly understood. The main focus of this paper was to explore whether access to selected AWMTs, such as deep and shallow wells, ponds, river diversions and small dams, has led to significant reduction in poverty, and if they did to identify which technologies have higher impacts. In measuring impact we followed different approaches: mean separation tests, propensity score matching and poverty analysis. The study used a unique dataset from a representative sample of 1517 households from 29 Kebeles in four regions of Ethiopia. Findings indicated that the estimated average treatment effect was significant and amounted to USD 82/ household. Moreover, there was 22% less poverty among users of AWMTs compared to non-users. The poverty impact of AWMT was also found to differ by technology type. Accordingly, deep wells, river diversions and micro dams have led to 50, 32 and 25 percent reduction in poverty levels compared to the reference, i.e. rain fed system. Finally, our study identified the most important determinants of poverty on the basis of which we made the policy recommendations: i) build assets; ii) human resource development; and iii) improve the functioning of labor markets and access to markets (input or output markets) for enhanced impact of AWMT on poverty

    Inventory, sustainability assessment, and upscaling of best agricultural water management practices

    No full text
    It is the belief of many analysts that agrarian countries like Ethiopia that depend on rain-fed agriculture are significantly vulnerable to rainfall variability, the risk which tends to aggravate with global climate change. Consequently, it is believed that future increases in food supplies and economic prosperity depend heavily on effective agricultural water management. It is with this in mind that the use of low-cost technologies for rainwater and runoff control, storage, water lifting, conveyance and application have become more widespread in Ethiopia since the recent drought of 2002/2003. A range of technologies are currently used with varying levels of impacts. This paper outlines an inventory, characterization, suitability and upscaling aspects of Agricultural Water Management Technologies (AWMT) in Ethiopia. Particular characteristics of each of the technologies, their suitability for a given environment, and the necessary conditions for their successful adoption and scaling up are identified. Furthermore, a variety of combinations of technologies used for control or storage, lifting, conveyance and application of rainwater are documented. Suitability of a technology in a particular environment depends on many factors, such as, the nature of technical complexity, the existing institutional and individual capacity to implement, the costs and benefits, etc. Technical considerations include implementation (set up), operation and maintenance, affordability and environmental impact. The results of a ranking exercise of the technical complexity of a given technology are presented. Concerns related to waterborne and water-related diseases due to stagnation, water quality and possibility of mosquito breeding are discussed. Households in some parts of Ethiopia, who have practiced improved agricultural water management suitable to their local conditions, have managed to diversify their incomes through beekeeping, livestock, intercropping cash crops with food crops and setting up shops, hotels and flour mills in the nearby towns or villages. Therefore, AWMT at smallholder level meet the intended purpose, provided that they are suitable and adaptable to the local circumstances. The question is which of the technologies are suitable to which area under what socioeconomic conditions
    corecore